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Abstract: The left-half segment of mucocin (1) was stereoselectively synthesized through a coupling
reaction of a tetrahydropyrany! aldehyde and a tetrahydrofuran derivative having an ethynyl group, which
were prepared from 2,3,4,6-tetra-O-benzyl-D-galactono-1,5-lactone and 2,5-anhydro-D-mannitol,
respectively. © 1999 Elsevier Science Ltd. All rights reserved.

The rapidly expanding family of annonaceous acetogenins has attracted much attention owing to the wide
spectrum of their biological activities such as cytotoxic, insecticidal, fungicidal, anthelmintic, and cancerostatic
effects.] Mucocin (1), which was recently isolated from the leaves of Rollinia mucosa (Jacq.) Baill.
(Annonaceae) by McLaughlin et al.2 is the first annonaceous acetogenin to be reported that bears a
tetrahydropyran ring along with a tetrahydrofuran ring.2 This compound shows remarkable inhibitory activities
against A-549 (lung cancer) and PACA-2 (pancreatic cancer) solid tumor lines with a potency of more than 104
times that of adriamycin. The powerful antitumor activity and the unique structure of 1 have consequently
stimulated synthetic efforts toward 1.3 We describe the stereocontrolled synthesis of the left-half segment 2 of
1 in this communication, and the synthesis of the right-half segment and total synthesis of 1 in the following
paper.4
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Our synthetic strategy directed toward 2 was based on a convergent process involving (a) a facile
preparation of a 2,6-disubstituted tetrahydropyran-3-ol derivative 8 by taking advantage of Kishi's C-
glycosidation method,’ (b) stereoselective synthesis of a highly functionalized tetrahydrofuran derivative 15,
and (c) construction of the left-half segment 2 through a condensation reaction of 8 and 15.

The tetrahydropyran 8 was prepared from 2,3,4,6-tetra-O-benzyl-D-galactono- 1,5-lactone (3)3 as follows
(Scheme 1). Reaction of 3 with decylmagnesium bromide in ether at -78 °C afforded a hemiacetal, which was
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@Reagents and conditions: (a) Decylmagnesium bromide, Et20, -78 °C. (b) Et3SiH, BF3-Et20, CH2Clp,
-40 °C. (¢) 10% Pd/C, H, EtOAc-MeOH, rt. (d) TBDPSCI, Imidazole, DMF, rt. () HC(OMe)3, CSA,
CH2Cl, rt. (f) Ac20, 135 °C. (g) 10% Pd/C, H2, EtOAc, rt. (h) NaOMe, MeOH, 1t. (i) MOMCI, i-PraNEt,
CH2CI2, 0 °C to rt. (j) TBAF, THF, rt. (k) Swern oxidation, -75 °C.

treated with triethylsilane in the presence of BF3-Ety0 at -40 °C to give a B-glycoside 46 in 80% yield.”
Subsequent debenzylation and mono-silylation of 4 afforded a triol § in 78% yield. Deoxygenation8 of § was
accomplished through an orthoester (66%) to provide an olefin 66 in 78% yield. This was converted into a
primary alcohol 79 by the following sequence: (1) hydrogenation of a double bond, (2) deacetylation, (3)
formation of a methoxymethyl (MOM) ether, (4) desilylation (93% overall yield). Swern oxidation of 7 gave
the building block 86 in almost quantitative yield.
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dReagents and conditions: (a) PivCl, pyridine, 0 °C to rt. (b) TBDMSCI, imidazole, DMF, rt. (c) LAH,
Et20, 0 °C. (d) TrCl (1.1eq.), 2,6-di-t-bu-4-methylpyridine, CH2Cl, rt. (¢) Swern oxidation, -75 °C. (f)
ethynyl magnesium chloride, ZnClp, CH2Cl2-Et20-THF, -78 °C. (g) MOMC], i-PraNEt, CH2Cl3, 0 °C to rt.

On the other hand, the synthesis of the tetrahydrofuran 156 started with 2,5-anhydro-D-mannitol (9)
(Scheme 2). Differential protection of the primary and secondary alcohols in 9 with pivaloyl chloride and -
BuMe,SiCl (TBDMSCI), respectively, gave a fully protected compound 10 (69%), whose pivaloyl groups
were effectively removed with LAH, producing 11 in 70% yield. Partially tritylation of 11 was achieved with
trityl chloride (1.1 molar equiv) in the presence of 2,6-di--butyl-4-methylpyridine to furnish a monotrityl
alcohol 126 (68%, based upon 11 consumed). Swern oxidation of 12 gave an aldehyde 13 which was
allowed to react with ethynylmagnesium chloride in the presence of ZnCl in dichloromethane-ether-THF? to
give a 93 : 7 mixture of the desired B-alcohol 146 and its epimer in 70% yield.l1® For this a-chelation



controlled addition of the ethynyl group, the presence of a TBSO-group was essential.!! The major isomer 14
was then converted into a MOM ether 156 in 83% yield, and the condensation reaction with 8 was examined.
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GReagents and conditions: (a) n-BuLi, CeCl3, THF, -78 C. (b) 5% PtO2, H2, EtOAc, rt. (c) Swem
oxidation, -75 C. (d) L-Selectride, THF, -78 <C. (¢) MOMCI, i-PraNEt, CH2Cl2, 0 C to rt. (f) TBAF, THF,
. (g) MsCl, EiN, CH2CIp, 0 C to rt. (h) Zn, Nal, DMF, 140 C. (i) 10% Pd/C, H2, EtOAc, rt. ) aq.
AcOH, 50 <C. (k) dimethyl-1-diazo-2-oxopropylphosphonate, K2CO3, MeOH, 0 Cto 1t.

Initial attempts!2 to react 8 with a lithium or magnesium compound derived from 15 resulted in a low
yield of the coupled product 16 as an inseparable mixture (Scheme 3). In contrast, addition of anhydrous
CeCli313 to the solution of the lithium acetylide prior to addition of 8 gave a mixture of alcohols 16 in good yield
(78% yield). 'H-NMR analyses,!0 however, revealed the major isomer was an undesired B-alcohol (86% d.
e.).14. 15 After several experimentations, the corresponding saturated isomers (176 and 186) were found to be
readily separated by column chromatography on silica gel. Conveniently, a simple two-step oxidation-reduction
sequence: (1) Swern oxidation, (2) L-Selectride reduction, of the mixture gave the desired a-alcohol 17 in high
yield (88% from 16) and its isomer 18 (3%). As the requisite stereochemistry at C(19) was thus efficiently
installed, our attention was next tuned to deoxygenation on the tetrahydrofuran ring. After protection of the 19-
hydroxy group as the MOM ether and deprotection of the TBS group in 17, the resultant diol 19 was converted
into a dimesylate 20 in 87% yield. Treatment!6 of 20 with zinc-sodium iodide in DMF afforded an olefin 21.
This underwent hydrogenation and de-tritylation, giving a primary alcohol 22 in 77% yield from 20. Swern
oxidation of 22 gave an aldehyde, which was transformed into the left-half segment 26 by Bestmann's
procedure.!”
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